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Abstract. We study the spectral statistics of interacting spin-less fermions in a two-dimensional disordered
lattice. Within a full quantum treatment for small few-particle systems, we compute the low-energy many-
body states numerically. While at weak disorder the interactions reduce spectral correlations and lead to
localization, for the case of strong disorder we find that a moderate Coulomb interaction has a delocalizing
effect. In addition, we observe a non-universal structure in the level-spacing distribution which we attribute
to a mechanism reinforcing spectral correlations taking place in small systems at strong disorder.

PACS. 71.27.+a Strongly correlated electron systems; heavy fermions – 73.20.Jc Delocalization processes –
72.15.Rn Localization effects (Anderson or weak localization)

1 Introduction

The ongoing miniaturization of electronic devices and
the peculiar physics associated motivate the investiga-
tion of systems with reduced dimensionality. In such sys-
tems, the effect of Coulomb interactions is expected to be
strong, and prominent experimental observations of the
last decade are thought to be due to correlation effects.

One such experimental result concerns the magni-
tude of the persistent currents in disordered mesoscopic
rings [1,2], which are much greater than theoretical pre-
dictions from approaches neglecting correlations [3]. The
interaction effect seems to be beyond the perturbative
regime, but a full treatment of the realistic situation is
out of reach (for a review see [4]). Nevertheless, analyti-
cal [5] and numerical [6,7] calculations in 1D and in 2D
have shown that a repulsive interaction can enhance the
persistent currents.

As another important example, a metallic behaviour
has been observed [8] (see [9] for a review) in 2D elec-
tron gases at low electronic density, where the ratio rs of
Coulomb to kinetic energy is large (>10). This cannot be
explained by the standard scaling theory of localization
which, neglecting electronic correlations, predicts an insu-
lating behaviour in 2D for any finite disorder strength [10].
Since interactions become important when the electron
density is low (large rs), they have been suggested to be
responsible for the observed metallic behaviour [7]. How-
ever, a perturbative introduction of the interaction leads
to a reinforcement of the electron localization [11]. This

a e-mail: Dietmar.Weinmann@ipcms.u-strasbg.fr
b UMR 7504 (CNRS-ULP)

points towards the necessity of treating the interactions
beyond perturbation theory, and several approaches have
been proposed in this direction.

Renormalization group techniques indicate that the in-
teraction permits a metal-insulator transition in a weakly
disordered two-dimensional electron gas [12,13]. However,
despite some well reproduced properties (such as the effect
of a magnetic field), a description of the transition is not
possible and the metallic phase is based on the assumption
of a Fermi liquid.

Alternatively, field theory based on the fact that the
metallic phase is not a Fermi liquid (as argued in [14])
has shown that a perfect metal can be stable in 2D if the
interaction is strong enough [15].

Furthermore, numerical calculation of the current-
current correlation function using a quantum Monte Carlo
approach has shown that interactions change the be-
haviour of the conductivity at low temperature from an
insulating to a metallic one [16], as observed in the ex-
periments. Numerical calculations of the zero-temperature
conductance, diagonalizing the Hamiltonian in a trun-
cated basis of Hartree-Fock states and using the Kubo
formula, indicate that the conductance can be enhanced
by moderate interactions at strong disorder [17]. In the
regime of weak disorder, a monotonic decrease of the con-
ductance was found.

All these approaches contain approximations. On the
contrary, numerical studies of model systems allow for ex-
act results, although they are limited to simplified models
and small system sizes. Therefore, such studies are able to
provide a complementary view of the mechanisms implied
in the interplay between disorder and interaction.
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Table 1. Summary of the behaviour of the distribution P (s)
for different regimes of interaction U and disorder in small
two-dimensional systems. PWMS stands for Pinned Wigner
Molecule Statistics (see text). The cross-over between the weak
and strong interaction regimes represent the main result of the
paper.

U Weak disorder Strong disorder

0 Wigner-Dyson Poisson

∞ PWMS PWMS

cross-over monotonic non-monotonic

In the present work, we numerically investigate in-
teracting spin-less fermions (spin-polarized electrons) in
small two-dimensional lattices with disorder, performing
a direct diagonalization of the Hamiltonian.

The limitation in size makes it difficult to vary directly
the electronic density as in experiment. To change the in-
teraction parameter rs, we vary instead the interaction
strength U while keeping the system size L and the par-
ticle number N constant.

Within this approach, we explore the interaction ef-
fects on the ground state structure and the probability
density P (s) of the normalized level spacing s = ∆/〈∆〉,
where ∆ = E1 − E0 is the energy spacing between the
many-body ground-state and the first excited state. We
denote by 〈...〉 the average over the ensemble of disorder
configurations.

In the non-interacting case, ∆ is equal to the one-body
level spacing at the Fermi energy. The statistics of these
one-body level spacings P (s) has been extensively stud-
ied and found to be an indicator of the metal-insulator
Anderson transition occurring in 3d as a function of the
disorder strength [18,19]. In the diffusive regime, P (s)
corresponds to Wigner-Dyson statistics, while the Ander-
son insulating regime is characterized by Poisson statistics
(Tab. 1)1.

In the opposite limit, at U = ∞, the structure of
the ground state is imposed by the Coulomb repulsion,
which leads to a Wigner crystal pinned by the disor-
der. We show in Section 1 that the resulting distribution
PU=∞(s) (which we call “Pinned-Wigner-Molecule Statis-
tics”, PWMS) is non-universal for finite size systems.

For weak disorder, we found the dependence of P (s)
on U to be consistent with previous studies: P (s) crosses
over smoothly from Wigner-Dyson statistics to its infinite
interaction limit [21–23].

Within an approximative method (Configuration In-
teraction method, starting from Hartree-Fock orbitals),
the strong disorder case has been studied by Benenti et al.
for larger systems [24]. They obtain an interaction-induced
transition of P (s) from Poisson to Wigner-Dyson. Our

1 The level spacing distribution for higher many-body exci-
tations addressed in references [20,21] is not directly related
to the statistics of the one-body spectrum. It is always close
to Poisson at U = 0, independently of the disorder strength,
and thus behaves very differently from the P (s) for the first
excitation we investigate.

findings of an increase of spectral correlations by mod-
erate interaction show that this behaviour persists when
electronic correlations are taken fully into account.

The non-trivial behaviour of the spectral statistics for
strong disorder is discussed in Section 3, after the pre-
sentation of the model we study (Sect. 2). In Section 4,
we present results for the inverse participation ratio of
the ground state in the many-body on-site basis, and
we show that the increase of spectral correlations is re-
lated to a delocalizing effect. Our conclusions are discussed
in Section 5, and a small-size effect modifying the shape
of P (s) is presented in Appendix A.

2 Disorder and Coulomb interaction

We consider N spin-less fermions on a two-dimensional L

by L lattice (in the following, we concentrate on N = 4
and L = 6). We note M = L2 the number of sites.

The Hamiltonian of the system is H = HA + HU ,
where HA is the standard Anderson Hamiltonian

HA = −t
∑

〈i,j〉

(
c+
i cj + c+

j ci

)
+

M∑

i=1

vic
+
i ci, (1)

with c+
i (ci) creating (destroying) an electron on the site i.

The first term of HA allows for hopping between nearest
neighbours 〈i, j〉 on the lattice. We take t = 1, represent-
ing then the energy scale. Periodic boundary conditions
are used, leading to a toroidal topology. The second term
of HA models a disorder potential. The vi are independent
random variables uniformly distributed in [−W/2; W/2],
and W is the disorder strength.

The interaction term is chosen to be of the Coulomb
form:

HU =
U

2

M∑

i,j=1
i�=j

c+
j c+

i ci cj

dij
, (2)

where dij is the smallest distance on the torus between
the sites i and j and U is the interaction strength.

This model allows us to study the effect of interactions
in disordered systems. For the exact diagonalization of
the Hamiltonian H , we have used a routine developed by
Simon and Wu [25] based on the Lanczos algorithm [26].

3 Interaction induced many-body
level-repulsion

In this section, we study in detail the probability distribu-
tion P (s) of the first excitation energy whose behaviour
in different regimes is sketched in Table 1.

In the absence of interactions, PU=0(s) corresponds to
the Wigner-Dyson distribution PWD(s) = π

2 s exp(−π
4 s2)



G. Vasseur and D. Weinmann: Delocalization due to correlations in two-dimensional disordered systems 281

for a diffusive (metallic) system. For a strongly disor-
dered system (Anderson insulator), its limiting behaviour
for L → ∞ is the Poisson distribution PP (s) = exp(−s)2.

In the strong interaction limit (U → ∞), the elec-
trostatic energy dominates and the energetically lowest
many-body states correspond to periodic distributions of
the electrons (Wigner crystal) which are pinned even by
a small amount of disorder. All Wigner crystals have the
same electronic structure, thus the same Coulomb energy,
but differ in their location on the lattice and therefore in
their disorder energy.

In the limit of low densities, the ground state struc-
ture approaches the usual hexagonal Wigner crystal, the
number of possible positions on the lattice is large, and
PU=∞(s) tends to Poisson. For higher densities we need to
take into account commensurability effects. In the studied
case, N and L are such that the nine energetically lowest
U = ∞ many-body states are square-shaped Wigner crys-
tals (which we will refer to as “Wigner molecules”) dif-
fering only by their location on the lattice. These nine
Wigner molecules have different disorder energy, and the
first excitation energy is

∆ = E1 − E0 =
N∑

k=1

vik
−

N∑

k=1

vjk
, (3)

where the jk describe the sites occupied by a parti-
cle in the energetically lowest Wigner Molecule (the
ground state) and the ik the occupied sites in the second
Wigner molecule (the first excited state). Since we only
have nine configurations, PU=∞(s) is not exactly Poisson.
Instead, it is a distribution which is intermediate between
semi-Gauss3 and Poisson, which we call PWMS.

Figure 1a shows P (s) with W = 5, for three values
of U . With this disorder strength, the single-particle lo-
calization length is larger than the system size, so that
the motion of non-interacting particles through the sam-
ple is diffusive and P (s) follows Wigner-Dyson statistics
at U = 0.

In this case, we find that the level repulsion decreases
with increasing interaction strength. In this sense, this
result is consistent with those of [21–23]. The difference is
that the U = ∞ limit of P (s) is in fact the PWMS and
not Poisson for the investigated system sizes.

This behaviour is as expected: strong interactions drive
the system out of the diffusive regime by setting up a
Wigner Crystal which is pinned by disorder. Therefore
spectral correlations disappear with increasing interaction
strength.

2 In finite systems, PU=0(s) is distinct from Poisson even for
W → ∞. For the system size we consider (M = 36), however,
the difference is rather small.

3 At half filling there are only two different Wigner crystal
configurations. Their energy difference is given by the differ-
ence between two sums of independent random numbers. Ac-
cording to the central limit theorem, its distribution in the limit
of N → ∞ is Gaussian. Since only positive values for s are con-
sidered, the resulting distribution P (s) is called semi-Gauss.
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Fig. 1. Distribution of the lowest many-body excitation for
different interaction strengths U at W = 5 (a) and W = 20 (b),
for 4 particles on a 6 by 6 lattice. Each curve is obtained from
data for 9000 disorder configurations.

Figure 1b shows our results for the case of stronger
disorder (W = 20). This disorder is not strong enough
to have a Poissonian P (s) in the non-interacting case,
and hence PU=0(s) is intermediate between Poisson and
Wigner-Dyson. Nevertheless, a single-particle state at the
Fermi energy is localized over about three sites only,
meaning that the system is far from the diffusive regime
for U = 0.

The main feature is that at this disorder strength,
the evolution of P (s) with the interaction strength is
non-monotonic. Obviously, for stronger interactions the
spectral correlations eventually decrease and P (s) ap-
proaches its infinite interaction limit (PWMS). For a mod-
erate U , however, the spectral correlations are increased
relative to the non-interacting case (i.e. P (s) is more
Wigner-Dyson-like). This is the main result of the present
paper. The increase of spectral correlations could be the
precursor of the transition towards universal correlations
found in [24].

The non-monotonic behaviour becomes less significant
as W increases further. Note that, with interaction, a peak
appears in the P (s) curves. This peak is the manifesta-
tion of a mechanism enhancing spectral correlations in a
non-universal way for small system size. We discuss this
mechanism in detail in Appendix A.

In order to characterize quantitatively the non-
monotonic behaviour exhibited by P (s), we consider the
evolution of the variance of s with U . We show in Figure 2
that this evolution in the cases of W = 5 and W = 20 is
very different. At W = 5 there is a monotonic evolution
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Fig. 2. The variance of s as a function of U at W = 5 (filled
circles) and W = 20 (open squares), for 4 particles on a 6 by
6 lattice. Each point is computed from 3000 disorder configu-
rations. The statistical error is smaller than the symbol size.
The W = 20 infinite U limit PWMS is approached from above
at values of U which lie outside the scale of the figure. For
Poisson,

〈
s2

〉 − 〈s〉2 = 1 (out of the scale of the vertical axis).

towards smaller correlations, while at W = 20 the variance
exhibits a minimum as a function of U (corresponding to
an increase of the spectral correlations).

With a short range interaction, we have found sim-
ilar results for P (s) at half filling. However, away from
half filling, configurations not affected by interactions are
connected by hopping matrix elements. Therefore, short
range interactions cannot suppress the mobility of the elec-
trons. As a consequence, the variance (or another param-
eter characterizing the distribution P (s)) does not reach
its PWMS value at strong U .

4 Delocalization in the many-body on-site
basis

The fact that P (s) approaches the Wigner-Dyson distribu-
tion in the presence of a moderate interaction could be in-
terpreted as a signature of a delocalization of the electrons.
Whereas the link between spectral correlations and local-
ization is clear for one-particle level statistics (U = 0),
it is less obvious in the interacting regime. To clarify
this interpretation, we have studied the localization of
the ground-state

|g〉 =
∑

n

Ψn |n〉 (4)

in the many-body on-site basis {|n〉}, via its inverse par-
ticipation ratio

R−1 =
∑

n

|Ψn|4. (5)

Contrary to P (s), the inverse participation ratio R−1

depends on the choice of the basis in which it is calculated.
In order to interpret the inverse participation ratio as a
measurement of the electron localization, we have chosen
for {|n〉} the Slater determinants

c+
i1

c+
i2

c+
i3

c+
i4
|0〉 (6)
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Fig. 3. Evolution of 1/
〈R−1

〉
as a function of U for W = 5

(circles, in the inset), W = 20 (squares), W = 23 (diamonds),
W = 25 (triangles) and W = 30 (crosses). The statistical error
is smaller than the symbol size.

which correspond to the four particles being localized on
the lattice sites i1, i2, i3 and i4 and where |0〉 is the empty
lattice state.

If |g〉 is given by one of these basis states |m〉, then
Ψn = δn,m, and R−1 = 1. If, on the other hand, |g〉
is a superposition of many elements of {|n〉}, then R−1

is very small compared to unity. Since the basis is built
with completely localized electrons, R−1 can be inter-
preted as a measurement of the localization of electrons
in the many-body state |g〉.

Figure 3 shows numerical results for the inverse of the
average of R−1. In the case of weak disorder (W = 5,
in the inset), this quantity is monotonically decreasing
with U , as expected. The U = 0 diffusive situation with
delocalized particles is perturbed by moderate interactions
which increase the scattering, reducing both the mobility
and 1/

〈
R−1

〉
. In the regime of strong interactions, the

electrons form a Wigner crystal to minimize electrostatic
energy. Since this corresponds to one particular state of
the chosen basis, R−1 decreases to one.

In the regime of strong disorder, the behaviour is very
different. At weak interaction, 1/

〈
R−1

〉
increases with U ,

which means that interaction has a delocalizing effect.
This can be understood within the following scenario.

At U = 0, we have localized one-body wave functions,
the disorder being strong enough to dictate the electronic
configuration. For finite U , the effect of the interaction de-
pends on this particular sample-dependent configuration.
In some samples, this electronic structure is close to the
one adapted to interaction (Wigner molecule), therefore
the interaction strengthens the localization. On the other
hand, in most samples, the disorder-adapted electronic
configuration is rather different from the Wigner molecule
structure. Therefore, increasing interaction strength in-
duces charge reorganizations (as proposed in [27,28] in
the context of one-dimensional rings and in [7] for small
2d systems) at particular sample-dependent values of the
interaction strength Uc. When U � Uc, the competition
between interaction and disorder leads to a ground state
which is a superposition of a state adapted to disorder
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Fig. 4. Distribution of δ at W = 20 for U = 2.5 (filled squares)
and U = 9 (open squares) calculated from 3000 disorder con-
figurations. The averages are indicated below the curves. The
statistical error for these averages is smaller than the symbol
size.

and another one adapted to interaction. This results in a
pronounced delocalization.

Since Uc is strongly sample-dependent, these delocal-
izations are smoothed by the disorder average. Further-
more, we expect that as W increases, the mean value of Uc

also increases and its distribution spreads, consistent with
the behaviour observed in Figure 3.

To illustrate these considerations, we can define for
each sample the increase

δ = R−1(U) −R−1
0 (7)

of R−1 with respect to the non-interacting value R−1
0 .

Figure 4 depicts the distribution of this quantity at W =
20, for two different values of U . We can see that the
most probable value of δ is close to zero. Nevertheless, for
U = 2.5 the negative tail of the distribution, correspond-
ing to strong delocalizations, is more pronounced than the
positive one, which corresponds to strong localizations, re-
sulting in a negative average of δ. This is not the case when
the interaction is strong (U = 9). We can conclude that
for W = 20, Uc is more probable to be close to 2.5 than 9.

Our results concerning R are consistent with those
of [7] for a related quantity, namely a participation ra-
tio calculated from the electronic density. We point out
that for weak disorder, interactions do increase the per-
sistent current [7] but decrease the conductance and di-
rectly related quantities (as seen in the present paper and
in [7,17]). If they persist in 3d, the combination of these
two effects might lead to an understanding of the mea-
sured persistent currents in diffusive wires.

5 Conclusion

We have studied the spectral statistics of interacting spin-
less fermions in a two-dimensional disordered system, us-
ing exact diagonalization.

We have found that correlations in the statistics of the
level spacing between the many-body ground state and

the first excited state are increased by a moderate in-
teraction when the disorder is strong enough to localize
the one-particle wave functions. The interpretation of this
effect as a delocalization of the electrons has been sup-
ported by the study of the inverse participation ratio for
the ground state.

The delocalization effect can be understood as a conse-
quence of a competition between disorder and interaction
for the structure of the ground-state, taking place at some
sample-dependent value of the interaction strength. This
competition results in charge reorganization caused by in-
creasing interaction from a configuration minimizing the
disorder energy to a configuration more adapted to the
interaction.

Our conclusion that interactions can increase the mo-
bility of spin-less fermions only in the case of strong dis-
order is consistent with those of direct (although approx-
imative) calculations of the conductance [17]. This shows
the relevance of the spectral statistics to characterize the
behaviour of an interacting many-body system.

It is desirable to include the spin degree of freedom in
future studies of the statistics of the first excitation energy
and the participation ratio of the correlated many-body
ground state. Results for the magnetization [29] and the
magneto-conductance [30] let us expect a rich behaviour
in such a system.

We acknowledge very useful discussions with and comments by
R.A. Jalabert, P.E. Falloon, G.-L. Ingold, and J.-L. Pichard.

Appendix A: Non-universal level statistics
in small systems

The peak appearing in the P (s) curve of Figure 1b for
U = 20 is the manifestation of a mechanism enhancing
spectral correlations in a non-universal way. Since its ma-
jor ingredient is a competition between disorder and in-
teraction, this mechanism could be the precursor of what
happens in bigger systems, where other mechanisms could
take place at higher order, resulting in enhanced spectral
correlations even in the thermodynamic limit.

The mechanism we want to describe takes place in
very small systems when the mean level spacing 〈∆〉 is
not much smaller than the hopping t. In order to explain
this mechanism, we start by considering the simpler non-
interacting situation, before treating the interacting case.

A.1 Non-interacting case

Without the hopping t, the eigenstates of the system are
Slater determinants of particles localized on single sites,
and the distribution of their energies is Poisson. In the
limit of strong disorder, W � t, the coupling t of neigh-
bouring sites is typically much smaller than their differ-
ence in on-site energy. Therefore, particles remain local-
ized on single sites, except in samples for which the energy
of the highest occupied site i is almost degenerate with
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that of the lowest unoccupied site j, and with these two
sites being nearest neighbours.

In those samples, the hopping couples directly two al-
most degenerate levels, resulting in a delocalization of one
electron over these two sites (as pointed out in [31]).

If the mean spacing 〈∆〉 is bigger than t (small size or
very big W ), the two coupled levels can be considered as
a two-level system. Therefore the level spacing is

∆ =
√

(vj − vi)
2 + 4t2. (8)

In the case where the sites i and j are not nearest neigh-
bours ∆ = vj − vi � 0. As a consequence, the special
samples are responsible for the appearance of a dip and a
peak in P (s) at s = 0 and s = 2t/ 〈∆〉, respectively.

On the other hand, if the mean spacing 〈∆〉 is smaller
than t (greater size and not too big W ), typically more
than two levels are coupled and eventually universal
random-matrix-theory-like correlations can arise. Even
though at intermediate sizes the spectral correlations are
still greater in the special samples, their weight in the en-
semble rapidly decreases with L. In the thermodynamic
limit, the anomaly therefore disappears.

A.2 Interacting case

In the absence of hopping (t = 0), given a quite strong
disorder W , it is always possible to find values of U such
that the two energetically lowest many-body states of a
given sample are almost degenerate. For example, one can
minimize the interaction energy (with a Wigner crystal)
and the other one can be slightly different, increasing the
interaction energy while reducing disorder energy.

Now, the first two many-body states can in certain
samples be connected by only a single hop of one particle.
The probability for such a situation is quite large since
one many-body state is coupled to many others by the
hopping of one of the particles.

In those samples, the introduction of the hopping cou-
ples directly two almost degenerate levels. If the values
of U and W are strong enough, the particles remain lo-
calized on individual sites except the one implied in the
connection of the two states. This results in a delocaliza-
tion of the ground state in the on-site basis (R = 2).

For 〈∆〉 > t (small size or very big W ), the two cou-
pled levels can again be considered as a two-level system,
and the non-universal correlations appear as explained
previously.

For 〈∆〉 < t (greater size and not too big W ), typically
more levels are coupled and the two-level system approxi-
mation breaks down. As for the non-interacting case, this
mechanism disappears in the thermodynamic limit. How-
ever, other mechanisms involving more hoppings can take
place, and the competition between disorder and interac-
tion might still induce delocalization and eventually stem
the spectral correlations seen in [24].
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